
cdscan and CDML –
file aggregation

The “cdscan” utility (1)

• CDAT provides a command-line file aggregation utility
is called cdscan.

• This allows you to describe an entire dataset with just
one XML file, that is opened by CDAT using the
standard cdms.open() call.

• The XML format is known as Climate Data Markup
Language (CDML) which is fully described in the
CDAT manual.

• Using CDML files:
– removes the need to know about filename
– provides a global description of a collection of files
– metadata and aggregation are handled together

CDML structure

• CDML files contain the following sections:
– <dataset> - general information at the dataset level.
– <axis> - axis dimension information.
– <variable> - relating to individual variables.

• At BADC we use and ECMWF ERA-40 CDML file
which:
– links to over 3,000,000 files
– is only 21KB in size!

cdscan in action

• cdscan will analyse the archive for:
– variable information
– axis information
– global (universal) metadata

• Let’s have a look at it in action:
– 1200 monthly mean NetCDF files to be scanned.
– Scenario 1: Filenames do not map nicely to their contents.

So we run cdscan plain and see what comes out.

$ cdscan –x monthly_means.xml ./*.nc

Using templates for filenames

• Scenario 2: Filenames reflect the contents of the files
closely with the file-naming convention:

<YYYY><MM>_<VARIABLE>.nc

• In the olden days, cdscan used to be “cdimport”
which had one excellent feature you might want to
make use of. It allows you to add a template for file
and directory names.

• The template allows you to specify time components,
start and end levels as well as variable IDs.

“cdimport”: cdscan’s predecessor

$ cdimport –h # yields information about the template:

%d day number (1 .. 31)
%eX ending timepoint/level, where X is a specifier character
%f day, two-digit, zero-filled (01, 02,…, 31)
%g month, lower case, three characters ('jan', 'feb', ...)
%G month, upper case, three characters ('JAN', 'FEB', ...)
%H hour (0 .. 23)
%h hour, two-digit, zero filled (00, 01, …, 23)
%L vertical level (integer)
%m month number, not zero filled (1 .. 12)
%M minute 0 .. 59
%n month number, two-digit, zero-filled (01, 02, ..., 12)
%S second (0 .. 59)
%v variable ID (string)
%y year, two-digit, zero-filled (integer)
%Y year (integer)
%z Zulu time (ex: '6Z19990201')
%% percent sign

Back to the example

• Scenario 2: Filenames reflect the contents of the files
closely with the file-naming convention:

<YYYY><MM>_<VARIABLE>.nc

• Run cdscan with the –p argument and your template:
$ cdscan –x monthly_means.xml -p %Y%n_%v.nc /*.nc

• Optionally, you can do a manual edit of the XML file to
tidy up the unused <cdms_filemap> attribute.

• This may hold millions of elements if you have a lot of
files which makes it slow to read.

What else can cdscan do? (1)

• Let’s look at the help output from
“cdscan –h”:

-a alias_file: change variable names to the aliases
defined in an alias file.

-c calendar: either "gregorian", "proleptic_gregorian",
"julian", "noleap", or "360_day". Default:

-d dataset_id: dataset identifier. Default: "none"
-e newattr: Add or modify attributes of a file, variable,

or axis.

What else can cdscan do? (2)

--exclude var,var,...: exclude listed variables from
output.

-f file_list: file containing a list of absolute data file
names, one per line.

-h: print a help message.
-i time_delta: scan time as a 'linear' dimension. This is

useful if the time dimension is very long.
--include var,var,...: only include the listed variables in

the output.

What else can cdscan do? (3)

-j: scan time as a vector dimension. Time values are
listed individually. Turns off the -i option.

-l levels: list of levels, comma-separated. Only specify
if files are partitioned by levels.

-m levelid: name of the vertical level dimension. The
default is the name of the vertical level dimension.

-p template: Compatibility with pre-V3.0 datasets.
'cdimport -h' describes template strings.

-q: quiet mode

What else can cdscan do? (4)

-r time_units: time units of the form "<units> since
yyyy-mm-dd hh:mi:ss", where <units> is one of
"year", "month", "day", "hour", "minute", "second“.

-s suffix_file: Append a suffix to variable names,
depending on the directory the data is located in,
deals with multiple files holding variables with the
same name.

What else can cdscan do? (5)

-t timeid: id of the partitioned time dimension. The
default is the name of the time dimension.

--time-linear tzero,delta,units[,calendar]: Override the
time dimensions(s) with a linear time dimension. The
arguments are a comma-separated list.

-x xmlfile: XML filename. By default, output is written
to standard output.

So what does the user see?

• cdscanned files are same as any other CDAT-
compatible data file:
>>> import cdms
>>> f=cdms.open(‘cdscanned_stuff.xml’)
>>> print f.variables # Will list the
variables

>>> var=f(‘q’, time=(“1910-10”, “1940-09”),
lat=(30,60), lon=(-20,10), level=1000)

var now holds the contents of whatever
actual data files needed to be aggregated
together.

• As a user you see none of this and can get on with
your science!

So why use cdscan?

1. Large datasets described as a grouped
entity.

2. No need to know underlying data format.
3. No need to know file-names.
4. Datasets can be sliced in any way the user

chooses using logical spatio-temporal
selectors rather than loops of programming
code.

5. You can use it to improve the metadata of
your data files…

cdscan to up your metadata quality!

• Since cdscan exposes a common set of metadata for
a dataset it can be used to improve your CF-
compliance!

• Use the ‘-e’ argument to add new attributes to your
variables, axes and at the global file level:

-e temp.standard_name=“air_temperature”

-e temp.units=“K”

-e level.standard_name=“depth”

-e .source=“UK Met Office Unified Model Version 5.5”
-e .references=“Cited in paper by E.S.Fuller (2001).”

	cdscan and CDML – �file aggregation
	The “cdscan” utility (1)
	CDML structure
	cdscan in action
	Using templates for filenames
	“cdimport”: cdscan’s predecessor
	Back to the example
	What else can cdscan do? (1)
	What else can cdscan do? (2)
	What else can cdscan do? (3)
	What else can cdscan do? (4)
	What else can cdscan do? (5)
	So what does the user see?
	So why use cdscan?
	cdscan to up your metadata quality!

